Температура плавления алюминия

Температура плавления материалов

Кристаллические и аморфные  материалы

Любой кусок металла, например, алюминия, содержит миллионы отдельных кристаллов, которые называются зернами. Каждое зерно имеет свою уникальную ориентацию атомной решетки, но все вместе зерна ориентированы внутри этого куска случайным образом. Такая структура называется поликристаллической.

Многие важные материалы являются некристаллическими – жидкости и газы, например. Металл теряет свою кристаллическую структуру, когда плавится. Ртуть является жидким металлом при комнатной температуре с температурой плавления минус 38 ºС.

Многие важные классы инженерных материалов имеют некристаллическую структуру в своем твердом состоянии. Их часто называют аморфными материалами. К ним относятся такие материалы, как стекла, многие пластики и резина. Многие важные пластики являются смесью кристаллических и аморфных материалов.

Аморфные материалы отличаются от кристаллических материалов по двум важным отличиям, которые связаны друг с другом:

  • отсутствие дальнего порядка молекулярной структуры
  • различия в характере плавления и термического расширения.

Различие молекулярной структуры можно видеть на рисунке 1. Слева показана плотно упакованная и упорядоченная кристаллическая структура. Аморфный материал показан справа: менее плотная структура со случайным расположением атомов.

Различие структуры кристаллических и аморфных материалов

Рисунок 1 – Структура кристаллических (а) и аморфных (б)  материалов.
Кристаллическая структура: упорядоченная, повторяющаяся и плотная,
аморфная структура – более свободно упакованная
с беспорядочным расположением атомов.

Плавление кристаллических и аморфных материалов

Это различие в структуре проявляется при плавлении металлов. Менее плотно упакованные атомы дают увеличение объема (снижение плотности) по сравнению с тем же металлом в твердом кристаллическом состоянии.

Металлы при плавлении испытывают увеличение объема. У чистых металлов это объемное изменение происходит весьма резко и при постоянной температуре – температуре плавления, как это показано на рисунке 2. Это изменение представляет собой разрыв между наклонными линиями по обе стороны от точки плавления. Обе эти наклонные линии характеризуют температурное расширение металла, которое обычно является различным в жидком и твердом состоянии.

Кривые нагрева чистого кристаллического материала (чистого алюминия) и аморфного материала

Рисунок 2 – Характерное изменение объема чистого металла
по сравнению с изменением объема аморфного материала [4]:
Tg – температура стеклования (перехода жидкого состояния в твердое);
Tm – температура плавления

Теплота плавления

С этим резким увеличением объема при переходе металла из твердого состояния в жидкое  связано определенное количество тепла, которое называется скрытой теплотой плавления. Это тепло заставляет атомы терять плотную и упорядоченное кристаллическую структуру. Этот процесс является обратимым, он работает в обоих направлениях – и при нагреве, и при охлаждении.

Плавление металлов

Равновесная температура плавления

Как было показано выше, чистые кристаллические вещества, например, чистые металлы, имеют характерную температуру плавления, которую часто называют «точкой плавления».  При этой температуре это чистое твердое кристаллическое вещество плавится и становится жидкостью. Переход между твердым и жидким состоянием для малых образцов чистых металлов настолько мал, что может измеряться с точностью 0,1 ºС.

Жидкости имеют характерную температуру, при которой они превращаются в твердое вещество. Эту температуру называют температурой затвердевания или точкой затвердевания. Теоретически – в равновесных условиях – равновесная температура плавления твердого вещества является той же самой, что и равновесная температура его затвердевания. На практике можно наблюдать небольшие различия между этими величинами (рисунок 3).

Температура плавления/затвердевания на кривых нагрева и охлаждения чистого металла, например, чистого алюминияРисунок 3 –  Кривые охлаждения и нагрева чистого металла.
Видны явления переохлаждения при охлаждении и перегрева при нагреве.
В начале затвердевания наблюдается впадина на кривой охлаждения,
что объясняется замедленным началом кристаллизации [4]

Температуры ликвидус и солидус

При плавлении сплава температура начала плавления называется температурой солидус (или точкой солидус), а температура окончания плавления – температурой ликвидус (или точкой ликвидус). «Солидус» означает, понятно, твердый, а «ликвидус» – жидкий: при температуре солидуса весь сплав еще твердый, а при температуре ликвидуса – весь уже жидкий.

При затвердевании этого сплава из жидкого состояния температура начала кристаллизации (затвердевания) будет та же температурой ликвидус, а окончания кристаллизации – та же температура солидус. При температуре сплава между его температурами солидуса и ликвидуса он находится в полужидком-полутвердом, кашеобразном состоянии.

Температура плавления алюминия

Плавление алюминия, как и других веществ, происходит при подводе к нему тепловой энергии, снаружи или непосредственно в его объём, как это происходит, например, при индукционном нагреве.

Чистота алюминия

Температура плавления алюминия зависит от его чистоты:

  • Температура плавления сверхчистого алюминия 99,996 %: 660,37 °С.
  • При содержании алюминия 99,5 %  плавление начинается при 657 °С.
  • При содержании алюминия 99,0 % плавление начинается при 643 °С.

Давление

Температура плавления алюминия повышается с увеличением давления. Зависимость температуры плавления алюминия от давления представлена на рисунок 3.

Зависимость температуры плавления алюминия от давления

Рисунок 4

Плавление алюминиевых сплавов

Влияние легирующих элементов и примесей

Добавление в алюминий других элементов, в том числе легирующих, снижает температуру его плавления, точнее – начала его плавления. Так, у некоторых литейных алюминиевых сплавов с большим содержанием кремния и магния температура начала плавления снижается почти до 500 °С. Вообще, понятие «температура плавления» распространяется только на чистые металлы и другие кристаллические вещества. У сплавов же нет определённой температуры плавления: процесс их плавления (и затвердевания) происходит в некотором интервале температур.

Плавление чистого алюминия и алюминиевого сплава - кривые нагрева

Рисунок 5 – Изменение удельного объема чистого металла (алюминия) и
сплава этого металла (алюминиевого сплава) [4]

Интервалы температуры плавления

В таблице ниже представлены температуры ликвидуса и солидуса некоторых промышленных деформируемых сплавов. Необходимо иметь в виду, что понятия температур солидус и ликвидус определены для равновесных превращений жидкой фазы в твердую и обратно, то есть при бесконечной длительности процессов. На практике надо делать поправки с учетом скорости нагрева или охлаждения.

Таблица интервалов плавления-затвердевания алюминиевых сплавов

Плавление силумина

Не все сплавы имеют интервал между температурами солидус и ликвидус. Такие сплавы называют эвтектическим. Например, у алюминиевого сплава с содержанием 12,5 % кремния точки ликвидуса и солидуса сводятся в точку: этот сплав как и чистые металлы имеет не интервал, а точку плавления. Эта точка и температура называются эвтектическими. Этот сплав относится к знаменитым литейным алюминиево-кремниевым сплавам – силуминам с узким интервалом солидус-ликвидус, что и дает их лучшие литейные свойства.

В двойном сплаве Al-Si температура солидус постоянна и составляет 577 °С. При увеличении содержания кремния температура ликвидус снижается от максимального значения для чистого алюминия 660 °С и до совпадения с температурой солидуса 577 °С при содержании кремния 12,6 %.

Среди других легирующих элементов алюминия сильнее всего понижает температуру плавления магний: эвтектическая температура 450 °С достигается при содержании магния 18,9 %. Медь дает эвтектическую температуру 548 °С, а марганец – всего лишь 658 °С! Большинство сплавов являются не двойными, а тройными и даже четверными. Поэтому при совместном влиянии нескольких легирующих элементов температура солидуса – начала плавления или конца затвердевания может быть еще ниже.

Затвердевание алюминия и его сплавов

Чистый алюминий

Чистые металлы, в том числе, чистый алюминий, имеют четкую температуру плавления – точку плавления.  Затвердевание или «замерзание» чистого алюминия происходит также при постоянной температуре. Когда чистый жидкий алюминий  охлаждается, его температура падает до температуры затвердевания и остается при этой температуре, пока весь он (жидкий алюминий) не затвердеет. На рисунке 6 показана типичная кривая охлаждения чистого металла с переходом его из жидкого состояния в твердое.

Кривая затвердевания чистого алюминияРисунок 6– Кривая охлаждения чистого металла (например, алюминия) [3]

Алюминиевый сплав

При затвердевании алюминиевого сплава, который состоит из алюминия и растворенного в нем легирующего элемента, например, кремния или меди, то кривая охлаждение этого сплава показывает, что начало затвердевания происходит при одной температуре, а окончание – при другой температуре (рисунок 7).

Кривая затвердевания алюминиевого сплаваРисунок 7 – Кривая охлаждения сплава (например, алюминиевого сплава) [3]

Нагрев алюминиевых сплавов для литья

Для нагрева алюминиевого сплава до температуры жидкого состояния, при которой  возможно выполнение операций литья, применяют плавильные печи различных видов. Тепловая энергия, которая требуется для того, чтобы нагреть металл до температуры жидкого состояния, при которой его можно разливать в литейные формы, состоит из суммы следующих компонентов:

  • Теплота, чтобы поднять температуру металла до температуры плавления
  • Теплота плавления, чтобы перевести металл из твердого состояния в жидкое состояние
  • Теплота для нагрева расплавленного металла до заданной температуры разливки

Температура разливки – это температура расплавленного металла, при которой он заливается в литейную форму. Важным фактором здесь является разность между температурой разливки и температурой, при которой начинается затвердевание. Этой температурой является температура (точка) плавления для чистого  алюминия или температура ликвидус для алюминиевого сплава. Эту разность температур иногда называют перегревом. Этот термин также может применяться для количества теплоты, которое надо отобрать от жидкого металла между разливкой и моментом начала затвердевания.

Температура кипения

  • Температура кипения чистого алюминия составляет 2494 ºС [1]

Другие термические свойства алюминия [1]:

  • скрытая теплота плавления: 397 кДж/г
  • удельная теплота испарения: 1,18 · 10-4 MДж/(г·К)
  • теплота сгорания: 31,05 МДж/кг
  • теплоемкость: 0,900 кДж/(г·К) при 25 ºС;
    1,18 кДж/(г·К) при 660,4 ºС (жидкий)

Температура плавления других металлов

Температура плавления некоторых других чистых металлов составляет (градусы Цельсия) [1]:

  • ртуть: минус 39
  • литий: 181
  • олово: 232
  • свинец: 328
  • цинк: 420
  • магний: 650
  • медь: 1085
  • никель: 1455
  • железо: 1538
  • титан: 1670

Источники:
1. Aluminum and Aluminum Alloys, ASM International, 1993
2. Handbook of Aluminum: Vol. 1, ed. G. E. Totten, D. S. MacKenzie, 2003
3. Groover, Mikell P. Fundamentals of modern manufacturing: materials, processes and systems, 4th ed. – JOHN WILEY & SONS, 2010
4.  Introduction to Alloy Phase Diagrams – ASM International, 1992