Водород в алюминии

Растворимость водорода в алюминии

Водород является единственным газом, который заметно растворяется в алюминии и его сплавах. Его растворимость изменяется пропорционально величине температуры и корню квадратному из давления. Как показано на рисунке, растворимость водорода в жидком алюминии значительно выше, чем в твердом: 0,65 и 0,034 мл/100 г, соответственно. Эти величины незначительно изменяются в зависимости от химического состава сплавов. При охлаждении и затвердевании расплавленного алюминия с содержанием водорода значительно выше, чем его растворимость в твердом состоянии, он (водород) может выделиться в молекулярной форме, что приведет к образованию первичных или вторичных пор.

rastvorimost-vodoroda-v-alyuminii

Водородная пористость алюминия

Образование пузырей водорода в алюминии сильно зависит от скорости охлаждения и затвердевания, а также от наличия центров зарождения  для выделения водорода, таких как захваченные внутрь расплава оксиды. Поэтому для образования пористости требуется значительное превышение содержания растворенного водорода по сравнению с растворимостью водорода в твердом алюминии. При отсутствии центров зарождения для выделения водорода требуется относительно высокая его концентрация – около 0,30 мл/100 г. Во многих промышленных сплавах пористость не обнаруживают и при таком довольно высоком содержании водорода, как 0,15 мл/100 г.

Водород в алюминиевых отливках

Расположение водорода в затвердевшем алюминии зависит от уровня его содержания в жидком алюминии и условий, при которых происходило затвердевание. Поскольку наличие водородной пористости является результатом механизмов зарождения и роста, которые контролируются диффузией, то снижение концентрации водорода и увеличение скорости затвердевания действуют подавляюще на зарождение и рост пор. По этой причине отливки, выполненные в методом литья в разъемный кокиль, более подвержены дефектам, связанным с водородом, чем отливки, которые изготавливали, например методам литья под давлением.

Источники водорода в алюминии

Водород попадает в алюминий из многих источников, включая атмосферу печи, шихтовые материалы, флюсы, плавильные инструменты и реакции между расплавленным алюминием и литейной формой.

Атмосфера печи. Если плавильная печь работает на природном газе или, скажем, на мазуте, то возможно неполное сгорание топлива с образованием свободного водорода.

Шихтовые материалы. Слитки, лом и литейный возврат могут содержать оксиды, продукты коррозии, песок и другие литейные абрисы, а также смазки, которые применяются при механической обработке. Все эти загрязнители являются потенциальными источниками водорода, который образуется при восстановлении органических веществ или химическом разложении паров воды.

Флюсы. Большинство флюсов – это соли и как все соли являются гигроскопичными, то есть готовыми «с удовольствием» впитывать воду. Поэтому влажный флюс неизбежно вносит в расплав водород, который образуется при химическом разложении воды.

Плавильные инструменты. Плавильные инструменты, такие как пики, скребки и лопаты тоже могут быть источником водорода, если не поддерживать их чистыми. Оксиды и остатки флюсов на таких инструментах являются особенно «хитрыми» источниками загрязнения, так как они впитывают влагу прямо из окружающего воздуха. Печные огнеупоры, желоба и распределительные каналы, известковые и цементные растворы, ковши для отбора проб – все они являются потенциальными источниками водорода, особенно если они недостаточно высушены.

Взаимодействие между жидким алюминием и литейной формой. Если в процессе заполнения литейной формы жидкий металл течет чрезмерно турбулентно, то он может захватывать воздух в ее внутренний объем. Если воздух не сможет или не успеет выйти оттуда до начала затвердевания, то произойдет попадание водорода в металл. Причиной захвата воздуха могут также неправильно выполненные питатели литейной формы. Еще одним источником водорода являются чрезмерно влажные песчаные литейные формы.

Реакция алюминия с водородом

Считается, что алюминий, как и большинство металлов не реагирует напрямую с водородом. Обычно металлы образуют соединения, путем потери электронов, которые принимаются другими элементами. Водород тоже образует соединения, теряя электроны (или делясь электронами). Поэтому обычно атомы водорода не принимают электроны, которые отдают металлы для образования соединений. Только некоторые очень реактивные металлы, такие как натрий, калий, кальций и магний могут «принуждать» атомы водорода принять их электроны с образованием твердых ионных соединений, которые называют гидридами этих металлов.

Для прямого синтеза гидрида алюминия из водорода и алюминия требуется сумасшедшее давление около 2000000000 атмосфер и температура выше 800 К. Между тем такое соединение как гидрид алюминия существует. Гидрид алюминия — это нестабильное соединение, которое легко разлагается при температуре выше 100 °С. Его получают не прямым путем, а в результате реакций других соединений.

Источник: Aluminum and Aluminum Alloys, ASM International, 1993.

Запись опубликована в рубрике Литье алюминия. Добавьте в закладки постоянную ссылку.