Нагартовка алюминия: немного физики

Методы обработки металлов давлением — прокатка, ковка, штамповка,  прессование – превращают литой алюминиевый слиток в готовый полуфабрикат или конечное изделие — алюминиевый лист, алюминиевую поковку, алюминиевую штампованную деталь или алюминиевый профиль. Это происходит при повышенной или комнатной температуре и может также включать один или несколько промежуточных нагревов — отжигов — алюминия или алюминиевого сплава для восстановления его пластичности. При этом происходит два основных изменения: 1) изменение формы и 2) изменение микроструктуры и механических свойств.

Пример: прокатка фольги из слитка

Например, прокаткой из алюминиевого слитка длиной 5 м и толщиной 300 мм получают около 200 километров алюминиевой фольги толщиной 7 микрометров. Изменение формы измеряется единицами деформации. И без численной оценки деформаций ясно, что здесь они были очень большими, и их нельзя было достичь за один проход. Обычно путь изготовления фольги начинается с горячей прокатки и заканчивается холодной прокаткой и отжигом.          

Почему алюминий пластичный?

Способность подвергаться большой пластической деформации является одним из наиболее полезных свойств металлов. Металлы с гранецентрированной кубической решеткой, к которым относится и алюминий, обычно проявляют хорошую пластичность — их можно легко деформировать в различные сложные формы.  Обычно металлы состоит из большого количества отдельных зерен или кристаллов, то есть они являются поликристаллическими. Типичное зерно или кристалл алюминия после горячей и холодной обработки, а затем отжига имеет диаметр, скажем, 40 мкм, а элементарная ячейка атомной кристаллической решетки – всего около 0,4 нм = 0,0004 мкм. Так что каждое зерно содержит много миллионов таких элементарных ячеек – порядка 1015 штук.

Дислокации в алюминии

При разливке алюминиевых слитков первичные кристаллы растут из жидкой фазы и литая микроструктура обычно очень грубая. Когда алюминий пластически деформируют, каждое зерно деформируется путем движения линейных дефектов своей кристаллической решетки. Деформация происходит за счет проскальзывания по плоскостям скольжения вдоль направлений сдвига. Эти дефекты называют дислокациями (рисунок 1).  Дислокации двигаются по некоторым кристаллографическим плоскостям в кристалле – так называемым «плотно упакованным плоскостям», которые известны как плоскости скольжения. Движение одной дислокации производит единичную сдвиговую деформацию, а объединенное движение сотен тысяч дислокаций — полную деформацию.   deformacia-putyom-skolzeniya-dislokacyi

Рисунок 1 

В ходе деформации при комнатной температуре число дислокаций возрастает и им становится трудно двигаться сквозь атомную решетку. В этом случае говорят, что алюминий «получил нагартовку», «получил  деформационное упрочнение» или даже «наклепался», а такой алюминий или алюминиевый сплав называют нагартованным. Это означает, что для продолжения деформации требуется все большие усилия, а алюминий постепенно теряет пластичность, что, в конечном счете, приведет к образованию в нем трещин и его разрушению.

В это время на атомном уровне происходит следующее. В ходе деформации скольжение дислокаций происходит очень активно и движущиеся дислокации различных плоскостей скольжения начинают взаимодействовать друг с другом, перепутываться между собой и образовывать так называемый «лес» дислокаций. С увеличением плотности дислокаций возрастает предел текучести материала — где-то прямо пропорционально корню квадратному из плотности дислокаций. 

Возврат и рекристаллизация деформированного алюминия

Дислокации, которые возникли при нагартовке алюминия, можно удалить путем нагрева нагартованного металла до умеренно высокой температуры, например, 345 °С. Это заставляет алюминий снова стать мягким и восстанавливает его пластичность. Этот нагрев называют отжигом. Изменения микроструктуры, которые происходят в ходе отжига, называют возвратом и рекристаллизацией. В ходе деформации при повышенных температурах обычно происходят процессы восстановления. Их называют динамическим возвратом и динамической рекристаллизацией. 

Благодаря этим процессам алюминий не нагартовывается так сильно как при комнатной температуре и требует для деформирования намного более низкие нагрузки. Уже при температуре 200 ºС чистый алюминий почти полностью теряет способность к нагартовке.  При умеренных пластических деформациях алюминиевых сплавов дислокации в них распределяются неоднородно, а формируют ячейки со стенками из перепутанных дислокаций и малой плотностью дислокаций внутри ячеек. Обычно эти ячейки имеют диаметр порядка 1 микрометра. Когда происходит возврат, стенки ячеек становятся границами так называемых субзерен. При отжиге алюминия или алюминиевого сплава после большого объема холодной пластической деформации происходит процесс рекристаллизации с образованием новых зерен (рисунок 2). Движущей силой рекристаллизации является запасенная внутренняя энергия, которая возникает при образовании дислокаций.

nagartovka-vozvrat-rekristallizaciyaРисунок 2

Плотность дислокаций можно выразить в виде их суммарной длины в единице объема материала. Для отожженного материала это может быть величина около 1010 м-2, а для сильно нагартованного алюминия она доходит до 1015 м-2.

Источник: TALAT 1251