Алюминиевые сплавы для низких температур

Деформированными алюминиевыми сплавами, которые чаще всего применяют для работы при отрицательных (низких) и криогенных температурах, являются сплавы 1100, 2014, 2024, 2090, 2219, 3003, 5083, 5456, 6061, 7005 и 7039.

Низкие, отрицательные и криогенные температуры

Кстати, оказывается, например, по ГОСТ 21957-76, что криогенными температурами следует называть температуры ниже 120 Кельвинов (-153 °С). Так, что до –153 °С температуры просто «низкие» или «отрицательные», а уж ниже –153 °С – криогенные.

Алюминиевые сплавы для криогенных температур

Алюминиевый сплав 1100

Будем называть этот сплав «сплавом», не «алюминием» как это обычно делается в зарубежных стандартах и публикациях. Этот сплав похож на алюминий АД по ГОСТ 4784-97, только с добавками меди от 0,05 до 0,20 %. При содержании меди до 0,05 % это уже сплав 1200 – аналог алюминия АД. При комнатной и отрицательных температурах сплав 1100 имеет относительно низкую прочность и в отожженном состоянии О,  и в нагартованных состояниях Н. В сварных соединениях и основной металл, и сварочный металл сохраняют хорошую пластичность вплоть до очень низких температур. Предел прочности сварного шва прутка из сплава 1100 в состояниях О и Н12 при температуре –196 °С составляет около 190 МПа. Алюминий 1100 применяют в виде труб, листов, плит и прутков в некритических компонентах криогенных систем.

Алюминиевый сплав 2014 (АК8 по ГОСТ 4784-97)

Алюминиевый сплав 2014-Т6 имеет относительно высокую прочность 480-490 МПа при комнатной температуре и при отрицательных температурах. Он сохраняет примерно без изменений пластические и вязкие свойства до температуры жидкого азота (‒196 °С). При этом модуль упругости (модуль Юнга) повышается с 75 до 83 ГПа, а коэффициент Пуассона снижается с 0,34 до 0,32.

Алюминиевый сплав 2024 (Д16 по ГОСТ 4784-97)

Этот алюминиевый сплав в состояниях Т3, Т4 и Т8 имеет высокую прочность 480-490 МПа и при комнатной температуре, и при отрицательных температурах. Прочность сварного шва этого сплава ниже, чем у сплава 2024. Этот сплав применяют в самолетостроении и аэрокосмической технике и соединяют механическими методами, например, заклепками.

Алюминиевый сплав 2090

Этот сплав относится к алюминиево-литиевым сплавам. Его формула (по средним значениям содержания): Al-2,7Cu-2,2Li-0,12Zr. Содержание лития – от 1,9 до 2,6 %. Криогенные свойства таких облегченных сплавов (плотность 2,59 г/см3) имеют большое значение для космической техники. Например, при изготовлении топливных баков для жидкого водорода. Наиболее выдающимся свойством алюминиевого сплава 2090 в состоянии Т81 является то, что предел текучести и временное сопротивление и относительное удлинение, а также вязкость разрушения с понижением температуры увеличиваются, причем независимо от продольной или поперечной ориентации образца для испытаний. Это свойство характерно и для некоторых других алюминиевых сплавов, например, 2219-Т87, но у сплава 2090-Т81 повышение механических свойств особенно велико.

Алюминиевый сплав 2219

Этот алюминиевый сплав имеет несколько более низкую прочность, чем сплав 2014-Т6, но более высокую вязкость при комнатной температуре и при отрицательных температурах. Из листов сплава 2219-Т87 изготавливали баки для жидкого кислорода и жидкого водорода, которые применялись на космических «Шатлах».

Алюминиевый сплав 3003

Алюминиевый сплав 3003 применяют для изготовления паяных теплообменников и другого оборудования для заводов по производству сжиженного газа. Из него производят трубы (в том числе, оребренные), листы и плиты. Легко соединяется пайкой или сваркой. Предел прочности сплава 3003 в состояниях О и Н18 при комнатной температуре составляет 110 и 200 МПа, а при температуре –195 °С – 230 и 280 МПа. Легкость обработки, высокая пластичность и вязкость, как при комнатной температуре, так и при отрицательных температурах, являются самыми важными свойствами этих сплавов.

Алюминиевый сплав 5083

Этот сплав является термически не упрочняемым. Максимальная вязкость достигается в отожженном состоянии. Хорошо сваривается, причем прочность сварного шва почти равна прочности основного металла. Широко применяется при изготовлении цистерн для транспортировки сжиженного газа.

Алюминиевый сплав 5456

Еще один нетермоупрочняемый алюминиевый сплав, который хорошо сваривается, а также имеет высокую пластичность и вязкость при криогенных температурах. Является альтернативой сплаву 5083.

Алюминиевый сплав 6061

Алюминиевый сплав 6061 обычно применяют в состоянии Т6. Он является свариваемым и может, в принципе, подвергаться термической обработке после сварки. Однако этого делать не рекомендуется, потому что это значительно снижает пластичность сварного шва. Одним из выдающихся примеров применения этого сплава являются сварные корпуса для насосов и двигателей, которые используют при перекачке сжиженного природного газа на распределительных газовых терминалах. Из сплава 6061 делают все возможные виды алюминиевого «проката»: прутки, трубы, профили, листы, плиты. Сплав 6061 в состоянии Т6 имеет более высокую прочность и более низкую пластичность, чем в состоянии Т4. Например, для листа из сплава 6061 при температуре –196°С при продольном образце предел прочности при растяжении для состояния Т6 составляет 450 МПа и относительное удлинение 10 %, а для состояния Т4 — соответственно 375 МПа и 19 %. Прочность сварных швов, которые были термически обработаны на состояние Т6, имеют более низкую прочность, чем основной металл.

Алюминиевый сплав 7005

Алюминиевый лист из сплава 7005 в состояниях Т6351 и Т5351 имеет более высокую прочность, чем лист из сплава 6061-Т6, но более высокую пластичность при одинаковых, в том числе, криогенных, температурах. Прочность сварного шва листа из сплава 7005-Т6351 без дополнительной термической обработки выше, чем прочность сварного шва листа из сплава 6061 с дополнительной термической обработкой на состояние Т6.

Алюминиевый сплав 7039

Этот сплав хорошо сваривается аргоновой дуговой сваркой. Сплав 7039 в состоянии Т6, в том числе по сварным швам, сохраняет хорошую пластичность и вязкость при криогенных температурах. Рекомендуется для криогенных сосудов под давлением.

Источник:  Aluminum and Aluminium Alloys, AMS International, 1993.